Effects of batch-wise CO₂ injection on well integrity: a numerical model of cement interface debonding

Bogdan Orlic¹ *, Mariëlle Koenen¹, Filip Neele¹

¹ TNO, Applied Geosciences, Utrecht, The Netherlands
* bogdan.orlic@tno.nl

Batch-wise CO₂ injection

Offshore geological CO₂ storage requires transporting CO₂ by pipeline or by vessel to offshore storage sites. Pipelines provide a continuous flow rate but require building a new costly infrastructure. Offshore transportation by ships is more flexible than pipelines, but provides an intermittent flow rate and may require a temporary offshore storage. To be economically feasible, CO₂ transportation by ship and offshore unloading will require fast, cyclic injection at high injection rates.

Transport by ships can be performed in semi-pressurized carriers with the capacity of 10 to 50 kt CO₂ (CCUS-T2013-09-D08, 2016). The CO₂ is transported in liquid state, to optimize the transport in terms of volume, either at a low pressure, close to the triple point (at 7-8 bar, temperature of -50 °C and density of about 1150 kg/m³) or at a medium pressure (at 16 bar, -28 °C and 1050 kg/m³). Injecting CO₂ directly in liquid state would be energetically efficient because liquid CO₂ flows more easily downwards by gravity due to the density of CO₂ close to water density; however, liquid CO₂ injection has been feared because of its low temperature causing the formation of gas hydrates in the near-well region, thermal contraction and associated stress reduction that may cause fracturing in the storage formation, the caprock and the wellbore (Vilarrasa and Rutqvist, 2017).

This study focuses on the integrity of wells and describes a numerical model developed to investigate thermal effects of injecting CO₂ at a lower temperature than that of the surrounding rock. Example simulations are performed to illustrate use of the model. The approach will be used in the European and national funded ALIGN-CCUS¹ project which unites 31 research institutes and industrial companies in the shared goal of supporting the quick and cost-effective deployment of carbon capture, utilisation and storage.

Numerical model for assessing the structural integrity of wells

The nonlinear finite element simulator DIANA (DIANA FEA, 2017) is used to generate meshes for 2D numerical models of the well system and run structural and heat transfer simulations. The workflow is automated by a dedicated user interface: the user-defined input and model parameters are used to generate meshes and define the whole non-linear (phased, staggered) analysis, which mimics the different loads acting on the well system throughout the entire lifetime of a well, from the drilling phase, well completion, testing, operations and abandonment (e.g. Bosma et al., 1999, Schreppers, 2015).

The model of the well system, representing a cross-section normal to the well axis, comprises the casing, the cement and the surrounding rock formation (Fig. 1). The chosen 2D modelling approach is computationally efficient and simulations can easily be repeated for various depths along the wellbore. Complete plane strain elements are used for bulk materials. Zero-thickness interface elements are used for the casing-cement and the cement-formation interfaces. The well materials are modelled with: a von Mises elasto-plastic material model for the steel casing; a combination of the Mohr-Coulomb elasto-plastic model and the multi-directional fixed crack model for the cement; a Mohr-Coulomb elasto-plastic model for the rock formation; and the Coulomb friction model with a tension cutoff for the interfaces between materials.

![Finite element mesh at wellbore at caprock level](image)

Fig. 1: Mesh for a 2D plane strain finite element model of the near-well region for assessing structural integrity of the wellbore through its lifetime.
A probabilistic analysis based on numerical simulations with random sampling of the model’s input parameters can be employed in the workflow. The key parameter to consider is the cement quality, i.e. the variations in cement properties. Well cement is essential for casing support and zonal isolation while the quality of cement downhole is often poorly known due to the lack of historical well data, deterioration of cement properties over time due to exposure to different loads during well operations or simply because of the limitations of currently available cement evaluation tools.

Use of the numerical simulation tool is illustrated on an example of a vertical CO₂ injection well. The analysis is focused on debonding of the interfaces between different well materials that could occur during primary cementing, testing and well operations. The model is set at the level of the caprock at a depth of 3,500 m. The temperature difference between the cold CO₂ and the ambient rock formation is 80°C. The CO₂ is injected continuously for 2 years. The random variables in the probabilistic model are the Young’s modulus and the Poisson’s ratio of cement, and the tensile strength of the interfaces. The input variables follow a truncated-normal statistical distribution. Distribution parameters are based on the ranges of the input variables reported in the literature. For the well cement, different distributions are used for the elasticity modulus of a stiff class G cement and a flexible cement.

Fig. 2a plots the output results of example simulations of cold CO₂ injection for a stiff cement: for the assumed set of model input parameters, there is only 3% certainty that debonding will not occur during injection, 7% certainty that the width of micro-annulus will be less than 100 µm, 84% certainty less than 200 µm and 99% certainty less than 240 µm. On the other hand, use of a flexible cement significantly reduces the risk of debonding, which does not occur in 44% of realizations in this numerical experiment (Fig. 2b).

In future work, the model should be used to investigate the effects of intermittent CO₂ injection on the integrity of well system. Further, probability density function of model output parameters could be fed into a well integrity risk assessment tool.

Fig. 2: Histogram of width of micro-annulus formed in an injection well at the level of the caprock during injection of cold CO₂. Numerical probabilistic simulations with the DIANA FE simulator for (a) a stiff well cement and (b) a flexible well cement.

Acknowledgements

The work described above was done as part of the ERA-NET ACT ALIGN-CCUS project No 271501 (Accelerating Low CarboN Industrial Growth through Carbon Capture Utilisation and Storage²). This project has received funding from RVO (NL), FZJ/PtJ(DE), Gassnova (NO), UEFISCDI (RO), BEIS (UK) and is co-funded by the European Commission under the Horizon 2020 programme ACT, Grant Agreement No 691712 (www.alignccus.eu).

References

