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Introduction 
In the last years, a significant increase in seismicity was caused by deep fluid injections. Fluid-induced 

seismicity has characteristics that distinguish it from natural seismicity. In particular, the seismic rate is a 
consequence of an interaction between time-variant fluid injection and physical properties, which are site-
dependent. One notable difference between natural and induced seismicity is that both hazard and risk are time-
dependent. In this talk, we present a non-uniform Poisson process to model induced seismicity associated with 
deep underground fluid injection. The time-variant rate of the Poissonian process is described as a function of the 
fluid-injection rate and a set of physical parameters defining the ground characteristics. The set of parameters are 
considered as random variables, and their uncertainty reflects the source-to-source variability. A significant 
strength of the Bayesian approach is that it allows uncertainties and expert judgments about the ground parameters 
to be encoded into a joint prior distribution of the model parameters. Moreover, as soon as the project starts and 
physical information become available, the Bayesian framework allows for the computation of the posterior 
distribution for the ground parameters, and the formulation of predictive models. After presenting the updating 
rules, the talk is concluded by introducing a forecast model for predicting the number and the magnitude of 
induced events for a given future time frame. 

Probabilistic and forecasting model 
In this talk, we propose a Non-Homogeneous Poisson Process (NHPP) to model the time occurrence of fluid 

induced seismic event. NHPP models are completely characterized by a time varying rate, 𝜆𝜆(𝑡𝑡;𝜽𝜽), which in this 
context is defined as (Mignan et al. 2017, Broccardo et al. 2017) 
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where 𝑉̇𝑉(𝑡𝑡) is the injection flow rate; 𝜽𝜽 = [𝑎𝑎𝑓𝑓𝑓𝑓 , 𝑏𝑏𝑓𝑓𝑓𝑓, 𝜏𝜏] is the set of parameters describing activation feedback, the 
earthquake size ratio, and mean relaxation time; moreover, 𝑚𝑚0 is the magnitude of completeness, and 𝑡𝑡𝑠𝑠 the shut-
in time. In the proposed Bayesian setting, we consider the parameter of the model as a random vector, 𝜣𝜣 =
[𝑨𝑨𝒇𝒇𝒇𝒇,𝑩𝑩𝒇𝒇𝒇𝒇,𝜯𝜯] to encode source-to-source variability. We define the prior joint-probability distribution as 
𝑓𝑓′𝜣𝜣�𝑎𝑎𝑓𝑓𝑓𝑓,𝑏𝑏𝑓𝑓𝑓𝑓, 𝜏𝜏� = 𝑓𝑓𝐴𝐴𝑓𝑓𝑓𝑓

′ (𝑎𝑎𝑓𝑓𝑓𝑓)𝑓𝑓𝐵𝐵𝑓𝑓𝑓𝑓
′ (𝑏𝑏𝑓𝑓𝑓𝑓)𝑓𝑓𝑇𝑇′(𝜏𝜏). Despite assuming independence in this definition, the posterior 

distribution encrypts any type of correlation structures emerging from the data. The marginal prior distributions 
are selected as follow: 𝑓𝑓𝐴𝐴𝑓𝑓𝑓𝑓

′ �𝑎𝑎𝑓𝑓𝑓𝑓� = Beta(𝑎𝑎𝑓𝑓𝑓𝑓;𝜽𝜽𝑎𝑎𝑓𝑓𝑓𝑓), 𝑓𝑓𝐵𝐵𝑓𝑓𝑓𝑓
′ �𝑎𝑎𝑓𝑓𝑓𝑓� = Beta(𝑏𝑏𝑓𝑓𝑓𝑓;𝜽𝜽𝑏𝑏𝑓𝑓𝑓𝑓), 𝑓𝑓𝛵𝛵′(𝜏𝜏) = Gamma(𝜏𝜏;𝜽𝜽𝜏𝜏), 

where 𝜽𝜽𝑎𝑎𝑓𝑓𝑓𝑓, 𝜽𝜽𝑏𝑏𝑓𝑓𝑓𝑓, 𝜽𝜽𝜏𝜏 are the model parameters of the prior distributions. These parameters are determined via 
Maximum Likelihood Estimate (MLE) on six datasets (Mignan et al. 2017, Broccardo et al. 2017). Given a set of 
observations 𝒟𝒟(𝑡𝑡) = [𝑡𝑡1, … , 𝑡𝑡𝑛𝑛, … , 𝑡𝑡𝑁𝑁;𝑚𝑚1, … ,𝑚𝑚𝑛𝑛, … ,𝑚𝑚𝑁𝑁], up to a time 𝑡𝑡, where 𝑡𝑡𝑛𝑛 is a given occurrence time and 
𝑚𝑚𝑛𝑛 a magnitude event with 𝑡𝑡𝑁𝑁 < 𝑡𝑡, the posterior probability distribution of the model parameters, 𝑓𝑓′′𝜣𝜣(𝜽𝜽|𝒟𝒟(𝑡𝑡)), 
is updated as  𝑓𝑓′′𝜣𝜣(𝜽𝜽|𝒟𝒟(𝑡𝑡)) = 𝑐𝑐(𝑡𝑡)ℒ(𝜽𝜽|𝒟𝒟(𝑡𝑡))𝑓𝑓′𝜣𝜣(𝜽𝜽) , where ℒ(𝜽𝜽|𝒟𝒟) is the likelihood function, and 𝑐𝑐(𝑡𝑡) is a 
normalizing factor. Given a magnitude frequency distribution, 𝑓𝑓𝑀𝑀(𝑚𝑚|𝑏𝑏𝑏𝑏𝑏𝑏),  the likelihood function is defined 
as follows (Broccardo et al. 2017) 

ℒ(𝜽𝜽|𝒟𝒟(𝑡𝑡))  = ��𝜆𝜆(𝑡𝑡𝑛𝑛|𝜽𝜽)
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Once the posterior distribution is computed, the predictive model for the number of event in a given 
time windows [𝑡𝑡, 𝑡𝑡 + ℎ] can be written as follows:  

𝑃𝑃(𝑁𝑁(𝑡𝑡) = 𝑛𝑛|𝒟𝒟(𝑡𝑡)) = � �
�∫ 𝜆𝜆(𝑡𝑡′|𝜽𝜽)𝑑𝑑𝑡𝑡′𝑡𝑡+ℎ
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𝑓𝑓′′𝜣𝜣(𝜽𝜽|𝒟𝒟(𝑡𝑡))𝑑𝑑𝜽𝜽.                               (3) 

and the probability of the Maximum Magnitude 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 as  

𝑃𝑃�𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑚𝑚�𝒟𝒟(𝑡𝑡)� = 1 −� ��𝑃𝑃(𝑀𝑀 > 𝑚𝑚|𝑏𝑏)𝑛𝑛𝑃𝑃(𝑁𝑁 = 𝑛𝑛|𝒟𝒟(𝑡𝑡))
∞

𝑛𝑛=1

�
𝒃𝒃

𝑓𝑓′′𝜣𝜣(𝑏𝑏|𝒟𝒟(𝑡𝑡))𝑑𝑑𝑏𝑏.                               (4) 

 
Figure 4 shows a short-term forecasting model based on the predictive models of Eq. (3) and Eq. (4), for 

the Basel 2006 fluid-induced seismicity sequence (Broccardo et al. 2017). Specifically, it is shown the 
prediction of the number of events 𝑁𝑁(𝑡𝑡) for a ℎ =  4[hours] time interval together with a 90% credible 
interval. In addition, it is reported the prediction of 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 (maximum magnitude) for a ℎ =  4[hours] time 
interval together with a 90% asymmetric credible interval. Figure 4 suggests that the proposed forecast 
model accurately predicts both the number and maximum magnitude of events for the given time window. 
Finally, by further defining a decision-making criterion, the credible intervals clearly become an important 
potential tool for defining a mitigation strategy. 
 

 
Fig. 1: Forecasting model for Basel 2006. a) Predictive model for 𝑵𝑵(𝒕𝒕), red bars are 90% credible 

intervals, black dot the observed number of events; b) Probability density distribution of 𝑵𝑵(𝒕𝒕), grey 
dashed lines 90% credible interval; c) Time series of magnitude events, red bar asymmetric credible 

interval for 𝑴𝑴𝒎𝒎𝒎𝒎𝒎𝒎 in a 4[hours] time window, yellow/red stems observed event, grey stems past  events; d) 
𝒇𝒇 (𝒎𝒎, 𝒕𝒕 +  𝒉𝒉|𝓓𝓓(𝒕𝒕)) red area asymmetric credible interval; e) Full predictive model for 𝑵𝑵(𝒕𝒕); d) Full 

prediction for 𝑴𝑴𝒎𝒎𝒎𝒎𝒎𝒎. Source: Broccardo et al. (2017) 
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